Saving Models to ONNX Format: A Comprehensive Guide (Python)
Introduction
ONNX (Open Neural Network Exchange) is an open format to represent machine learning models. Converting your models to ONNX allows you to use our web app for making inferences. This guide will walk you through the process of saving both scikit-learn and PyTorch models to ONNX format.
Know strictly that this guide is for python users, if you are using different programming languages like C++, Julia etc visit the Official ONNX Runtime Website for detailed guide on model conversion to .onnx
1. Saving scikit-learn Models to ONNX
1.1 Prerequisites
Before you begin, make sure you have the necessary packages installed:
pip install scikit-learn skl2onnx onnxruntime numpy
1.2 Step-by-Step Guide
- Import required modules
- Define initial types for your model's input
- Convert the model to ONNX format
- Save the ONNX model to a file
1.3 Code Example with Detailed Explanations
# Import necessary modules
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import onnxruntime as rt
import numpy as np
# Define the initial types based on your model's input features
initial_type = [('float_input', FloatTensorType([None, 2]))]
# Convert the model to ONNX format
options = {type(model): {'zipmap': False}}
onx = convert_sklearn(model, initial_types=initial_type, options=options)
# Save the ONNX model to a file
with open("model.onnx", "wb") as f:
f.write(onx.SerializeToString())
1.4 Parameter Explanations
initial_type
: Defines the input shape and type for your model.None
: Allows for variable batch size2
: Number of features (adjust this to match your model's input)
options
: Additional conversion options'zipmap': False
: Disables creation of a ZipMap operator, which can improve performance
model
: Your trained scikit-learn model
2. Saving PyTorch Models to ONNX
2.1 Prerequisites
Ensure you have the following packages installed:
pip install torch torchvision onnx
2.2 Step-by-Step Guide
- Import required modules
- Load your PyTorch model
- Create a dummy input tensor
- Export the model to ONNX format
2.3 Code Example with Detailed Explanations
import torch
import torch.onnx
# Load your PyTorch model
model = YourPyTorchModel()
model.load_state_dict(torch.load('model.pth'))
model.eval()
# Create dummy input tensor
dummy_input = torch.randn(1, input_size)
# Export the model
torch.onnx.export(model, # model being run
dummy_input, # model input (or a tuple for multiple inputs)
"model.onnx", # where to save the model
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes
'output' : {0 : 'batch_size'}})
2.4 Parameter Explanations
model
: Your PyTorch model classdummy_input
: A tensor with the same shape as your model's inputexport_params=True
: Stores the model's trained parameters in the ONNX fileopset_version=10
: The ONNX version to use (adjust if needed)do_constant_folding=True
: Optimizes the model by folding constantsinput_names
,output_names
: Names for input and output nodesdynamic_axes
: Specifies which dimensions can have variable sizes (like batch size)